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Abstract Induced hypothermia can be used to protect the brain from post-ischemic and traumatic
neurological injury. Potential clinical applications and the available evidence are discussed in a
separate paper. This review focuses on the practical aspects of cooling and physiological changes
induced by hypothermia, as well as the potential side effects that may develop. These side effects
can be serious and, if not properly dealt with, may negate some or all of hypothermia’s potential
benefits. However, many of these side effects can be prevented or modified by high-quality intensive
care treatment, which should include careful monitoring of fluid balance, tight control of metabolic
aspects such as glucose and electrolyte levels, prevention of infectious complications and various
other interventions. The speed and duration of cooling and rate of re-warming are key factors in
determining whether hypothermia will be effective; however, the risk of side effects also increases
with longer duration. Realizing hypothermia’s full therapeutic potential will therefore require
meticulous attention to the prevention and/or early treatment of side effects, as well as a basic
knowledge and understanding of the underlying physiological and pathophysiological mechanisms.

These and other, related issues are dealt with in this review.
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Introduction

Induced hypothermia is being used with increasing frequency to provide protection for the brain,
spinal cord and perhaps other organs, such as the heart, against post-ischemic and post-traumatic
injury. A large body of evidence from animal experiments suggests that hypothermia may be
effective in various clinical situations if applied appropriately and quickly enough. These
observations have been confirmed by an increasing number of clinical studies showing that
hypothermia can be successfully used clinically for indications such as post-hypoxic injury following
cardiopulmonary resuscitation (CPR). These issues and the evidence supporting various clinical
applications of induced hypothermia are discussed in a separate review.

The expanding use of hypothermia in medicine means that most intensivists and others working
in the ICU are likely to be confronted with patients who are treated with artificial cooling. Therefore,
it is important that those employing hypothermia as a medical tool obtain a basic understanding
of the underlying mechanisms, the physiology of temperature regulation and the many physiological
changes taking place when a patient is cooled. Moreover, hypothermia can be a two-edged sword;
although significant benefits can be achieved, there are many potential side effects that, if left
untreated, can diminish or even negate the potential benefits. These side effects, as well as
physiological changes associated with cooling and various practical aspects in inducing hypothermia,

are the topic of this review.

Physiology and mechanisms

Physiology of temperature regulation and induction of
hypothermia

The human body can be roughly divided into two thermal compartments: a “core” compartment,
consisting of the trunk and head, excluding the skin, and a “peripheral” compartment, consisting
of the skin and extremities. Under normal circumstances core body temperature is strictly regulated

around a set point of 36.60+0.38°C. Slight variations in this set point occur in the course of a day;



usually body temperature is highest at £18:00 h. The temperature of the peripheral compartment
is less strictly controlled and, under normal circumstances, is 2—4°C lower than the core temperature.
This difference increases in cold environments and decreases in warm environments. The core
temperature is regulated by limiting or increasing heat transfer to the periphery through vasodilation
or vasoconstriction; in turn; heat loss from the peripheral compartment is regulated through changes
in skin perfusion (again through vasodilation or vasoconstriction) and by increasing or decreasing
the production of sweat. When warm blood flows from the core to the periphery, heat is transferred
from the blood to the surrounding tissues and to the cooler tissue near the skin. The rate of
conduction from peripheral blood vessels to the outside depends on the diffusion coefficient, which
is determined by tissue characteristics. For example, fat insulates about three times as well as
muscle, so that obese patients will lose heat more slowly than those who are lean [1, 2]. In
experiments in healthy volunteers, the increase in metabolic rate due to shivering is attenuated by
the square root of percent body fat [2]. In addition, there are differences between different muscle
groups in regard to the intensity of shivering and the amount of heat that can be generated. Muscles
of the trunk region began to shiver sooner, and at a higher intensity, than those of the limbs [2].

Apart from sweat production (evaporation), heat loss can occur via convection, conduction and
radiation (Table 1). The amount of heat loss depends on the temperature gradient, exposed surface
and thermal conductivity. At rest and under normal circumstances 50-70% of the heat loss in
awake patients occurs through radiation [1, 3]. In sedated patients in the ICU most heat loss will
occur via radiation and convection. When patients are actively cooled this is often accomplished
by facilitating convection and/or conduction, as well as by facilitating the transfer of heat from
the core to the peripheral compartment (see below).

[Table 1 will appear here. See end of document.]

Induction of hypothermia

If hypothermia develops (either accidentally or intentionally induced), the body will immediately
try to counteract this disturbance in homeostasis. The initial response will be to decrease heat loss,
mainly through increasing sympathetic tone and through vasoconstriction in the skin. This response
complicates attempts to induce therapeutic hypothermia by external cooling (see below). In addition,
heat production will be increased through shivering and, in later phases, through the increased
metabolism of fats, carbohydrates and proteins. Shivering can lead to increases in oxygen
consumption of between 40% and 100% [4, 5, 6], an undesirable effect particularly in patients

with neurological and/or posthypoxic injury. These responses can be counteracted by the



administration of sedatives, anesthetics, opiates and/or paralyzing drugs (see below). Sedation and
anesthesia also increase peripheral blood flow, thereby increasing the transfer of heat from the
core to the periphery. As explained above, the rate of heat loss is determined by the temperature
gradient, body composition and the conductive properties of the environment. For example, water
is a much better conductor of heat than air and, thus, wet skin will transfer heat much more easily
than dry skin. Heat loss is further increased by the use of alcohol-based, rather than water-based,
solutions.

It should be noted that the capacity and effectiveness of the mechanisms to control body
temperature decrease with age. Younger patients will therefore react earlier and with greater
intensity and effectiveness to changes in body temperature than older patients. In addition, older
patients have a lower rate of metabolism, often a lower body mass index (BMI) and less effective
vascular response (i.e., less vasoconstriction). Thus, in general, the induction of hypothermia in
younger patients will be significantly more difficult than in older patients. Induction of hypothermia
in younger patients often requires high doses of sedatives to counteract the above-mentioned
counter-regulatory mechanisms. Similarly, achieving hypothermia through surface cooling in
obese patients will take more time due to the insulating properties of fat. This implies that the
surface cooling of obese patients will be more difficult and require significantly more time to

achieve target temperatures.

Metabolic and cellular effects of hypothermia

Hypothermia affects many intracellular processes. Some of these are directly related to its protective
effects; these aspects are discussed in more detail in Part 1 of this review. Here we will focus on
those features that are relevant to physiological and pathophysiological changes induced by cooling.
These changes are listed in Tables 2, 3 and 4.

[Table 2 will appear here. See end of document.]

[Table 3 will appear here. See end of document.]

[Table 4 will appear here. See end of document.]

Hypothermia leads to a lowering of the metabolic rate. Indeed, in the past it was assumed that
the protective effects of hypothermia were due solely to the slowing of cerebral metabolism, with
associated decreases in consumption of glucose and oxygen. It has since become clear that other
mechanisms are involved, which probably play a much greater role than the changes in metabolic
rate. These issues are discussed in Part 1 of this review. Nevertheless, the effects on metabolism

are significant and probably do play a part in providing neuroprotection. In addition, these changes



in metabolism occur in all organ systems; this means, for example, that there will be a decrease
in oxygen consumption and carbon dioxide production (which implies that ventilator settings
should be adjusted), a reduction in feeding requirements, etc. Metabolism is reduced by between
5% and 7% per Celsius degree reduction in body temperature [7, 8, 9]. Cerebral blood flow is also
decreased, but, when corrected for the decrease in metabolism, the net result is a relative increase.

Many hypothermia-induced metabolic changes occur relatively quickly, within the first few
hours. These include changes in energy metabolism and decreases in adenosine tri-phosphate
(ATP) demand. Other changes, such as a rise in lactate levels, occur over a longer period of time
(>3 h). Induction of hypothermia also leads to an increase in membrane stability, with decreased
permeability of cellular membranes, the blood-brain barrier and blood vessel walls [10, 11, 12,
13, 14]. One of the consequences of this is a decrease in edema formation, that appears to be one
of the ways in which hypothermia can protect against neurological injury. In addition, hypothermia
can prevent or mitigate the excessive influx of Ca>" into the cell, as well as decrease accumulation
of the excitatory neurotransmitter glutamate in the extracellular space [15]. Calcium influx and
glutamate accumulation are key elements in the destructive cascade that can follow a period of
ischemia; calcium influx into the cell can lead to mitochondrial dysfunction and the activation of
various enzymes which can cause additional cell injury and death [15]. Hypothermia also leads
to a decrease in intracellular acidosis (although the extracellular pH usually decreases slightly
during cooling, due to increased levels of lactic acid, glycerol, free fatty acids and ketonic acids;
see below).

Hypothermia also influences the immune system, with an inhibition of neutrophil and macrophage
function, suppression of inflammatory reactions and inhibition of the release of pro-inflammatory
cytokines [16, 17, 18]. This effect on immune response may contribute to hypothermia’s
neuroprotective effects, but, of course, increases the risk of infections (see below). Other
anti-inflammatory mechanisms include the prevention or mitigation of reperfusion-related DNA
injury, lipid peroxidation and leukotriene production as well as a decrease in the production of
nitric oxide [19, 20]. In addition, hypothermia decreases reperfusion injury and free radical

production [19].

Practical aspects and side effects

Induction of hypothermia induces a large number of physiological changes in the circulatory and

respiratory systems, coagulation system, drug metabolism, etc. (listed in Table 2). For the successful



use of hypothermia, awareness of these physiological effects and pathophysiological mechanisms
is of key importance. The failure to demonstrate positive effects of hypothermia in some clinical
trials may be partly due to insufficient regard for side effects causing the (partial) negation of
protective effects. In addition, unawareness of hypothermia’s physiological consequences may
lead to over-treatment. For example, even mild hypothermia induces decreases in cardiac output,
mild acidosis, a rise in lactate levels and a moderate increase in levels of amylase. These changes
are normal, do not signify any deterioration in the patients’ condition and do not require treatment.
Naturally, such changes can sometimes be unwanted, such as shivering with its associated rise in
oxygen consumption and patient discomfort. Many of these physiological effects can be counteracted
by appropriate medication, such as sedatives, analgesics or paralyzers. The use of therapeutic
hypothermia will usually require ICU admission and monitoring and often (but not always) sedation
and intubation.

The physiological and pathophysiological effects of cooling largely depend on the degree of
hypothermia. For example, a significant risk for severe arrhythmias occurs only at temperatures
below 28-30°C. Such low temperatures are now rarely employed in induced hypothermia, although
they are used more frequently in specific surgical procedures, such as major vascular surgery. This
review will focus on the effects of mild to moderate hypothermia (31-35°C).

The physiological adaptations to hypothermia, changes in laboratory values and potential side
effects are listed in Tables 2, 3 and 4. These changes depend to varying degrees on the patients’
age, underlying disease, co-morbidity etc. Some of these changes can be suppressed or prevented

by medication, appropriate sedation or other factors.

Cardiovascular and hemodynamic effects

Hypothermia is initially associated with sinus tachycardia, after which bradycardia develops. This
is partly due to decreases in metabolism and partly to the direct effects of hypothermia on the
heart. Various ECG changes may occur (listed in Table 2). The risk of arrhythmias during mild
or moderate hypothermia is very low, but increases significantly when the temperature drops below
30°C. The initial arrhythmia is usually atrial fibrillation, which can be followed (at temperatures
<28°C) by the risk of ventricular flutter or fibrillation. An additional problem is that arrhythmias
in deeply hypothermic patients are difficult to treat, as the myocardium becomes less responsive
to defibrillation and anti-arrhythmic drugs. When therapeutic hypothermia is applied, therefore,
great care should be taken to keep temperatures at 30°C or more, as the risk of clinically significant

arrhythmias increases exponentially below this temperature level.



Initially, the induction of mild hypothermia increases myocardial oxygen demand relative to
supply; the mechanism is probably a hypothermia-induced increase in plasma levels of adrenaline
and noradrenaline leading to an increase in cardiac output and oxygen demand [21]. With further
reductions in temperature, decreases in heart rate and the slowing of metabolism will reduce cardiac
afterload and oxygen demand. Mild hypothermia decreases cardiac output by about 25% and leads
to increased vascular resistance and a rise in central venous pressure. During severe hypothermia
(Z30°C) left ventricular contractility itself may decrease, inducing systolic and diastolic dysfunction.
In healthy subjects mild hypothermia (35.5°C) has been shown to increase coronary perfusion [21,
22]. However, one study reported that, in patients with pre-existent coronary artery disease, coronary
vasoconstriction may occur during hypothermia [22]. This difference is presumed to be caused
by endothelial dysfunction associated with atherosclerosis [21]. This would imply that there is a
theoretical risk of myocardial injury during the induction of mild hypothermia in patients with
cardiovascular disease, especially in the phase when cooling is initiated and the heart rate
temporarily increases.

On the other hand, there is strong evidence from animal studies that the induction of hypothermia
during or following myocardial infarction can decrease the infarct size [23, 24, 25, 26, 27, 28, 29,
30]. Hypothermia has been used in one clinical study in 42 patients with acute myocardial infarction
undergoing emergency percutaneous coronary intervention [31]. Twenty-one patients were treated
with hypothermia for 3 h after reperfusion, the other patients served as controls. The hypothermia
group had a trend to smaller infarct sizes and fewer major adverse cardiac events, though these
differences did not reach statistical significance in this small number of patients. Although firm
conclusions regarding the benefits for cases of myocardial infarctions cannot yet be drawn, these
data do at least suggest that hypothermia did not adversely effect outcome in these patients with

coronary artery disease.

Coagulation

Hypothermia induces a mild bleeding diathesis, with increased bleeding time due to its effect on
platelet count [32, 33], platelet function [32, 33, 34], the kinetics of clotting enzymes and

plasminogen activator inhibitors [35, 36] and other steps in the coagulation cascade [36, 37, 38].
It should be pointed out that the laboratory results of standard coagulation tests such as prothrombin
time and partial thromboplastin times will remain normal, because these tests are usually performed
at 37°C in the lab. Tests will be prolonged only if they are performed at the patient’s actual core

temperature [39]. However, in spite of the above-mentioned abnormalities, the risk of significant



bleeding is very low, even in patients with traumatic brain injury (TBI) [40]. None of the clinical
trials in patients with TBI, subarachnoid hemorrhage, stroke or post-anoxic coma have reported
increased intracranial bleeding associated with cooling. These observations are confirmed by data
from animal experiments showing decreased extravasation of hemoglobin during hypothermia
[12]. Overall, few bleeding complications were seen in any of the major clinical trials using
hypothermia, and risks of bleeding should therefore not preclude the use of hypothermia if deemed
appropriate. Platelets and/or fresh frozen plasma can be administered to improve coagulation if
necessary.

Coagulation disorders may be a greater problem in trauma patients. Here the use of therapeutic
hypothermia is somewhat controversial and a potential conflict between ‘protecting the brain and
protecting the body’ may arise. Various studies have reported an association between hypothermia
and adverse outcome in trauma patients [41, 42, 43]; this link has given hypothermia an ominous
reputation among trauma surgeons and has led to recommendations of the aggressive re-warming
of trauma patients. However, its should be pointed out that most of these studies were uncontrolled
and retrospective, and in most cases no multivariate analysis was performed to correct for potential
confounders [review of this issue: 44]. One study that did perform multivariate analysis, correcting
for factors such as presence of shock (associated with both hypothermia and adverse outcome,
and therefore a potential confounder) concluded that hypothermia is a marker, but not a cause, of
adverse outcome [45]. Thus, although hypothermia does induce a degree of coagulopathy, its
reputation in trauma patients may be partly undeserved; the use of therapeutic hypothermia in
trauma patients should, therefore, not be automatically excluded. This view is underscored by
observations that active re-warming of hypothermic patents with TBI may adversely affect outcome
[46]. We therefore recommend that the use of hypothermia be considered in trauma patients who
meet inclusion criteria as set out in Part 1 of this review (for example, patients who have undergone
CPR with unclear neurological outcome) provided they do not have active bleeding and are

hemodynamically stable.

Infection

Evidence from clinical and in vitro studies shows that hypothermia can impair immune function.
Indeed, (as discussed above) inhibition of inflammatory responses may be one of the mechanisms
through which hypothermia exerts neuroprotective effects. Hypothermia inhibits the release of

various pro-inflammatory cytokines [16, 17] and suppresses chemotactic migration of leukocytes

and phagocytosis [47]. Hypothermia-induced insulin resistance and hyperglycemia may further



increase infection risks (see below). Thus, there are plausible mechanisms for an immunosuppressive
effect of hypothermia.

A number of studies, mostly in patients with stroke or TBI, have indeed reported higher risks
of pneumonia when therapeutic hypothermia is used over longer periods of time (>48—72 h) [48,
49]. However, other studies using hypothermia for prolonged periods in patients with TBI reported
no increase in infection rates [50, 51]. This may be attributable to antibiotic prophylaxis or selective
decontamination of the digestive tract (SDD), which were used in some of these studies [51].
Short-term cooling (<24 h) does not appear to increase the risk of infection [50, 52, 53]. Overall,
the risk of respiratory tract infections appears to increase when patients are cooled for 48 h or
more; this problem appears manageable with rigorous surveillance and, perhaps, prophylactic
measures.

Some studies have also reported a higher risk of wound infections associated with hypothermia
[54, 55]. This may be related to both diminished leukocyte function and hypothermia-induced
vasoconstriction. Animal studies have shown that the establishment of infection probably occurs
within the first 3 h of bacterial inoculation [55, 56, 57] and is facilitated by local vasoconstriction
and hypoperfusion. This may be important in patients requiring surgery during treatment with
hypothermia. Moreover, other wounds, including bed sores and catheter insertion sites, are more

likely to show progression and/or impaired healing during cooling.

Hypovolemia, fluid balance and electrolytes

The induction of hypothermia can lead to the loss of significant amounts of fluids, due to so-called
hypothermia-induced diuresis [58, 59, 60, 61]. This may be especially pronounced in patients with
TBI, in whom diabetes insipidus, induced by cranial trauma, and administration of medication
such as mannitol may exacerbate fluid losses [51, 59, 60]. The impact of this may be significant,
especially in patients with TBI or subarachnoidal hemorrhage (SAH) where even very brief episodes
of hypovolemia or hypotension can significantly, and adversely, affect outcome [62, 63, 64].
Indeed, any beneficial effects of hypothermia may be lost due to side effects if these are not treated
proactively and vigorously [58]. Therefore, close attention should be paid to the patients’ diuresis
and fluid balance especially during induction of hypothermia (i.e., the phase when the patients’
body temperature is decreasing, which is the phase when excessive diuresis and hypovolemia are
most likely to occur [51, 58, 59]). In our center we infuse 500—1000 ml of saline and electrolytes
(see below) in TBI patients upon initiation of cooling (provided the patients are young and have

no significant counter-indications) and supplement fluid losses that occur during cooling [51, 58,



59]. However, these problems are much less evident in other categories of patients, such as those
with post-anoxic coma following CPR [52, 53, 65]. The reason for this difference is probably that
the risk of excessive fluid loss in TBI patients is caused by a combination of hypothermia and
other factors, such as the administration of mannitol to decrease intracranial pressure.

Another important problem is induction of electrolyte disorders. We and others have observed
severe electrolyte disorders (i.e., low levels of Mg, K, P and Ca) during cooling of patients with
TBI [59, 66]. Such electrolyte disorders can cause cardiac arrhythmias as well as hypotensive
episodes with decreases in cerebral blood flow. Magnesium may be especially important in this
regard, because of its specific role in mitigating neurological injuries [67, 68, 69, 70, 71].
Intracellular free magnesium in the brain declines by up to 60% following moderate traumatic
brain injury in rats [72]. Numerous animal studies have shown that magnesium depletion leads to
significantly worse outcomes in experimental TBI; administration of magnesium before or even
after trauma substantially mitigates secondary injury and reduces the loss of cortical cells [67, 68,
69, 73, 74,75, 76]. Magnesium may also play a role in the prevention of reperfusion injury, which
is one of the key mechanisms underlying secondary neurological injury [76]. In addition, loss of
magnesium is associated with vasoconstriction of cerebral and coronary arteries [77, 78, 79].

Clinical studies in ICU patients have shown that hypomagnesemia is associated with adverse
outcome [80]. Severe head injury itself is associated with significant loss of electrolytes including
magnesium [71]; thus many patients with TBI have hypomagnesemia at admission [71], which
subsequently can be significantly exacerbated by the induction of hypothermia [59]. Electrolyte
disorders are easily treated or prevented; physicians utilizing induced hypothermia should be aware
of these risks. It should be noted that serum levels do not always accurately reflect magnesium
status [79], and in our opinion magnesium levels should be maintained in the high or high-normal
range in all patients with neurological injury [70]. Other electrolytes, such as phosphorus and

potassium, should also be monitored closely and maintained in the high-normal range [70].

Other metabolic effects

Hypothermia decreases insulin sensitivity and insulin secretion, which can lead to hyperglycemia.
Hyperglycemia is associated with increased infection rates, increased incidence of renal failure
and critical illness neuropathy and various other complications, while prevention of hyperglycemia
and tight control of glucose levels may decrease morbidity and mortality in ICU patients [81].
These protective effects are due to the prevention of hyperglycemia per se rather than to the direct

effects of insulin [82, 83]. This underscores the importance of tight glucose regulation, especially
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in patients treated with hypothermia in whom hyperglycemia is more likely to develop. The amounts
of insulin required to maintain glucose levels within the normal range are likely to increase during
the induction of hypothermia and physicians applying hypothermia should be aware of this
phenomenon.

Hypothermia also induces mild acidosis through various mechanisms including increased
synthesis of glycerol, free fatty acids, ketonic acids and lactate. These changes are normal metabolic

consequences of hypothermia and should not be attributed to complications such as bowel ischemia.

Shivering

As discussed in “Physiology and mechanisms”, the body will employ various mechanisms to
generate heat, including shivering which may increase oxygen consumption and patient discomfort.
In ventilated patients this can be counteracted by the administration of sedatives and analgesics
or, if deemed appropriate, the administration of muscle paralyzers. Shivering can be attenuated
by relatively small doses of opiates; meperidine (pethidine) appears to be somewhat more effective
in this regard due to a higher activity at the kappa receptor [15]. This means that lower doses
(12.5-25 mg) can be used, which may be especially important if hypothermia is used in awake
patients. When using paralyzers and/or opiates is deemed undesirable, alternatives with which to
treat shivering include the administration of clonidine, neostigmine and ketanserine. However,
care should be taken to avoid adverse effects; for example, clonidine may aggravate

hypothermia-induced bradycardia.

Miscellaneous

Another important issue is the effect of hypothermia on drug metabolism and pharmacokinetics.
The enzymes that metabolize most drugs are highly temperature-sensitive and, thus, drug
metabolism is significantly affected by hypothermia. Clearance of various drugs is decreased and
in most patients doses should be lowered during hypothermia. Unfortunately, few data are available
regarding the effects of hypothermia on the metabolism of specific drugs. However, the studies
that have been carried out confirm the expectation that plasma levels increase and the effects of
drugs are prolonged. For example, plasma levels of propofol increase by approximately 30% and
of fentanyl by 15% when individuals are 3°C hypothermic [55]. A number of the medications for

which data are available are listed in Table 2.
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Cooling methods and practical guidelines

Methods to induce hypothermia

There are numerous strategies to cool patients, based on the four basic mechanisms for heat loss:
convection, conduction, evaporation and radiation. In addition, heat generation in patients with
hyperthermia can sometimes be reduced by antipyretic agents. However, in patients with elevated
temperature caused by impaired thermoregulation (such as central fever or heat stroke) these agents
are often ineffective. Various cooling techniques have been used in in vitro and clinical studies,
including ice-water circulating blankets, ice bags, air mattresses, cooling catheters, intravenous
infusion of cooled fluids (4°C) followed by cooling through other methods, the infusion of
extracorporeally cooled blood via the carotid artery, helmets and cooling caps with cold fluids or
chemical cooling capabilities, ice-water nasal lavage, cold peritoneal lavage and cardiopulmonary
bypass [31, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93]. The methods most commonly employed in the
clinical setting are summarized in Table 5. Cooling caps and coils wrapped around the head have
been used mainly in infants and neonates, but have also been tried in adults.

[Table S will appear here. See end of document.]

Most large clinical trials published so far have used either water-cooling or air-cooling blankets.
Air-cooling blankets have also been used in general wards in awake patients [94, 95]. Water-cooling
blankets are much more efficient for cooling than for warming patients, because the temperature
difference can be set much higher; during warming a set temperature above 40—42°C can cause
burns, whereas the skin is much more tolerant of lower temperatures. As explained in “Physiology
and mechanisms”, the speed of inducing hypothermia may be important in achieving optimum
effects. The times required to achieve target temperatures have varied considerably in the clinical
trials published so far, ranging from approximately 2 h [51, 52] to around 8 h [46, 53]. These time
periods depend on patient factors (nature of the underlying disease or injury, age, sex, BMI),
countermeasures to prevent shivering and heat generation, and on technical aspects such as the
cooled surface, temperature of the blankets or air, cooling capacity, etc. In a recently published
study in patients with TBI we were able to induce temperatures of 34°C or below in 95% of our
patients within 2 h, by using two cooling blankets (above and below the patient) with the water
temperature set at 4°C until the core temperature was 33°C or less (the target temperature being

32°C), and by using water and alcohol sprays and exposing the areas of skin that were not directly
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cooled [51]. Heat transfer from core to periphery may also be facilitated by the use of vasodilatory
medication.

An even quicker method was described in a preliminary report by Bernard et al. [96], who used
large volumes (30 ml/kg) of ice-cold (4°C) intravenous fluid (lactated Ringer’s solution) to cool
22 comatose survivors of out-of-hospital cardiac arrest quickly. These authors were able to decrease
core temperature from 35.5 to 33.8°C within 30 min with no adverse consequences, and concluded
that this was an inexpensive and effective method of initially inducing mild hypothermia. We have
used this method in selected cases in our own clinic with good results and no adverse effects.

A new development is the availability of intravascular cooling catheters such as the CoolLine,
SetPoint and others (Table 5). These are central lines with two or three balloons filled with
temperature-controlled saline, allowing direct intravascular (and, therefore, core) cooling via the
subclavian, superior caval or femoral vein. Experience with these catheters has been relatively
limited so far, although they are rapidly gaining in popularity. Initially, two small feasibility trials
in six [90] and eight patients [91] reported that it was an effective, relatively quick method to
induce and maintain hypothermia, and that it was less labor-intensive than the ‘conventional
methods’ listed above. Of note, no thrombus formation on these catheters was observed upon
removal in these studies. Endovascular cooling has also been used to induce brief periods of
hypothermia in 20 non-sedated patients undergoing percutaneous coronary intervention with the
aim of reducing infarct size [31]. A larger trial using this device to cool 51 patients with
hyperthermia in a neurosurgical ICU has recently been published; the authors reported that the
device was safe and effective in inducing hypothermia [92]. However, no studies have yet been
published in which these devices have been used for longer-term (>24 h) cooling.

Yet more novel approaches include the use of selective brain cooling [86], peritoneal cooling
[88] and ice-water nose cooling [93]. Experience with these methods is limited to animal studies
and/or small case series [93]. Treatment with paracetamol or acetaminophen may serve as an
accessory method to lower temperature, especially in patients with hyperthermia, although their

effectiveness in patients with neurological injury is limited [94].

Practical guidelines

Therapeutic hypothermia can be used in various types of neurological injury and perhaps for other
indications, such as the prevention of reperfusion injury. The use of hypothermia will often require
intubation, mechanical ventilation, sedation and, at times, pharmacologic paralysis to prevent

shivering. A major problem induced by these measures is that they may significantly hamper
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neurological assessment of the patient; thus patients should be carefully monitored for, for example,
the development of seizures, which may present much less clearly. As outlined in “Practical aspects
and side effects”, the induction of hypothermia can cause a number of side effects; however, many
of these can be prevented or attenuated. Fluid balance should be carefully monitored and
hypovolemia and hypotension avoided, especially in patients with TBI or SAH. Electrolyte disorders
(especially hypomagnesemia) and arrhythmias should be prevented, if necessary by the early or
prophylactic administration of anti-arrhythmic agents. This also applies to hyperglycemia, which
should be combated through intensive insulin therapy and frequent monitoring.

Infections should be prevented by early or even prophylactic treatment with antibiotics. Bleeding
complications can be avoided by the timely administration of platelets or fresh frozen plasma,
particularly if surgical interventions or invasive procedures are performed. From this perspective,
realizing hypothermia’s full therapeutic potential presents a great challenge to ICU physicians,
requiring first-rate quality in many aspects of intensive care. This applies not only to intensivists
but, in equal measure, to ICU nurses and others caring for critically ill patients in the ICU.
Hypothermia-induced vasoconstriction of the skin and increased risk of wound infections will
increase the risk of bed sores, as will the sedation and paralysis often required in these patients.
The risk of respiratory tract infections may increase, requiring extra vigilance and interventions
by the nursing staff, physiotherapist and others. Infections should be treated promptly and
aggressively. The use of selective decontamination of the digestive tract should be considered in
these patients.

The insertion sites of central venous catheters will require close monitoring and extra care. The
patient may become relatively unstable, especially in the cooling phase while the core temperature
is decreasing. Polyuresis, electrolyte disorders and hypotension may develop, especially in patients
with TBI; ventilator settings will need to be changed as oxygen demand and production of carbon
dioxide decrease due to the slowing of metabolism. Blood samples must be frequently drawn and
analyzed on site or sent for analysis; the patient must be closely monitored for any signs of shivering,
seizures etc. All this will, at least temporarily, increase the nursing work load. This is something
to keep in mind as various studies have demonstrated that the lack of nursing and medical staff
due to increased workload can adversely affect outcome [97].

The successful application of hypothermia thus requires a concerted team effort and the
difficulties involved, as well as potential side effects and risks, should not be underestimated.
Using this therapy requires vigilance, attentiveness and experience. ICUs considering the use of

therapeutic hypothermia should adopt strict guidelines and protocols, and provide training for ICU
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physicians, nursing staff and other members of the ICU team. When hypothermia has been used
it is important that patients should not be re-warmed too quickly, as this may have adverse effects

especially in patients with TBI.

Summary and conclusions

A large body of evidence suggests that hypothermia can be used to prevent or limit damage to the
injured brain and spinal cord, and perhaps the heart, in selected categories of patients. It is important
to induce hypothermia as quickly as possible, as protection appears to be greater when cooling is
initiated early (although benefits have been reported even when cooling was initiated many hours
after injury). As shown in this review, the induction of hypothermia will affect every organ in the
body and it is important that ICU staff members are aware of this and are able to distinguish
physiological changes from pathophysiological side effects.

The successful application of hypothermia requires the use of strict protocols, vigilance by the
medical and nursing staff, and close attention to the prevention of side effects. The volume status
of patients treated with cooling should be monitored carefully, to prevent hypovolemia and
hypotension. Other measures should include the frequent monitoring of electrolyte levels to avoid
electrolyte disorders (especially hypomagnesemia) and prevention or early treatment of arrhythmias,
if necessary by early or prophylactic administration of anti-arrhythmic agents. In addition,
hyperglycemia should be avoided through intensive insulin therapy and frequent monitoring of
glucose levels, and infections should be prevented by early or prophylactic treatment. Bleeding
complications can be avoided by the administration of platelets or plasma if surgical interventions
or invasive procedures are required. Patients should be re-warmed slowly, as too rapid re-warming

can adversely affect outcome.
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